التمرين الأول: (4 نقاط) لكلّ سؤال، واحدة من بين الإجابات الأربعة صحيحة. أوجد الإجابة المناسبة.

				, -: -	
٦	₹	·	Í		
x > 6.7	$ x \le 6.7$	$ x \ge 6.7$	x < 6.7	في حالة العدد الحقيقي χ يحقق	1
			' ' '	، -6,7 < x < 6,7	
الحصر	الحصر	الحصر	الحصر	ن $\pi=3,141592$ علمًا أن	2
$3,141 \le \pi \le 3,143$	$3,1414 \le \pi \le 3,1416$		$3,141 \le \pi \le 3,142$	\dots فإنّ القيمة $^{-4}$ $^{-4}$ هي مدى	
من نفس المستوي	ليسا متوازيين	متوازيان أو متقاطعان	من نفس المستوي	مستقيمان من الفضاء ،	3
أوليسا من نفس المستوي	وليسا متقاطعين			هما مستقيمان	
إذن Λ قاطع لكلّ مستقيمات	إذا عامد 🛆 مستقيما	إذن 🛕 يعامد كلّ مستقيمات	إذا عامد 🛆 مستقيما	لیکن Δ مستقیما و P مستویا	4
P	موازیًا لـ P	M المارّة من P	M مار من P	من الفضاء.	
				$oldsymbol{\Lambda}$ يعامد P في نقطة $oldsymbol{\Lambda}$	

التمرين الثاني: (4 نقاط ونصف)

لاحظ الرّسم البياني عـ1 حدد بالملحق، حيث:

، و مستطيل MNCB و MNCB و $M \in [DC)$ و $M \in [AB)$

 $x > \sqrt{3}$ و MA = xcm و $AB = \sqrt{3}cm$ و MB = BC

اليكن S قيس مساحة الرباعي AMND و S قيس مساحة الرباعي S فيس مساحة الرباعي S المنتمتر مربّع.

$$S' = \left(x - \sqrt{3}\right)^2$$
 و $S = x\left(x - \sqrt{3}\right)$

MNCB ب- أو جد القيمة العدديّة الممكنة لـ χ ، إذا علمت أنّ قيس مساحة الرباعي

مساور لثلث قيس مساحة الرباعي AMND.

$$Q = x^2 - 2\sqrt{3}x + 8$$
 و $P = (x - \sqrt{3})^2$ ييكن x عددًا حقيقيًا والعبارتين الجبريّتين: $Q = x^2 - 2\sqrt{3}x + 8$

أ- أوجد القيمة العدديّة لـ $oldsymbol{Q}$ في كلّ حالة من الحالات التالية:

$$x = 2 + \sqrt{3}$$
 (* ; $x = \sqrt{5}$ (* ; $x = 3$ (* $Q > 5$; $Q = 5 + p$; $Q = 5 + p$

$$5 + (x - \sqrt{3})^2 > 5$$
 ; $x^2 - 2\sqrt{3}x + 8 \le x^2 + 3$; $x^2 - 2\sqrt{3}x + 8 = 8$

التمرين الثالث: (3 نقاط ونصف)

لاحظ الرّسم البياني ع<u>ــ2ــد ب</u>الملحق، حيث المجسّم ABCDEFGH مكعّبًا قيس طول حرفه مساوٍ لـ 5cm ،

(MN)/(BD) و $N \in [AB]$ و $M \in [AD]$

 $AF = BD = 5\sqrt{2}cm$ أ- بيّن أنّ: (1

ب- بتطبيق مبر هنة طالس في المثلث ABD ،

NB = 3cm و $MN = 2\sqrt{2}cm$

2)أ- بيّن أنّ المستقيم (MA) يعامد المستوي (ABE).

ب- بيّن أنّ المثلّث MAF قائم الزاوية في النقطة A.

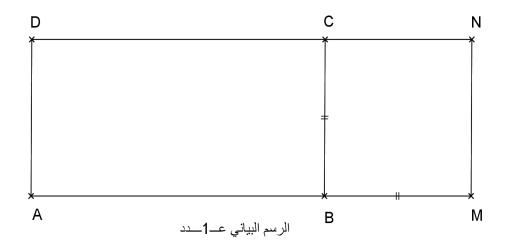
 $MF = 3\sqrt{6}cm$:ج- استنتج أنّ

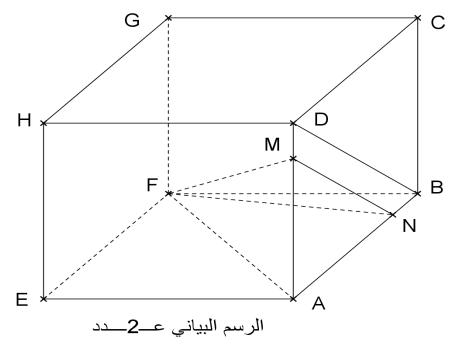
(3) هل أنّ المثلث MNF قائم الزاوية في النقطة N؟علل الإجابة.

☞ انظر الصفحة الموالية

التمرين الرابع: (4 نقاط)

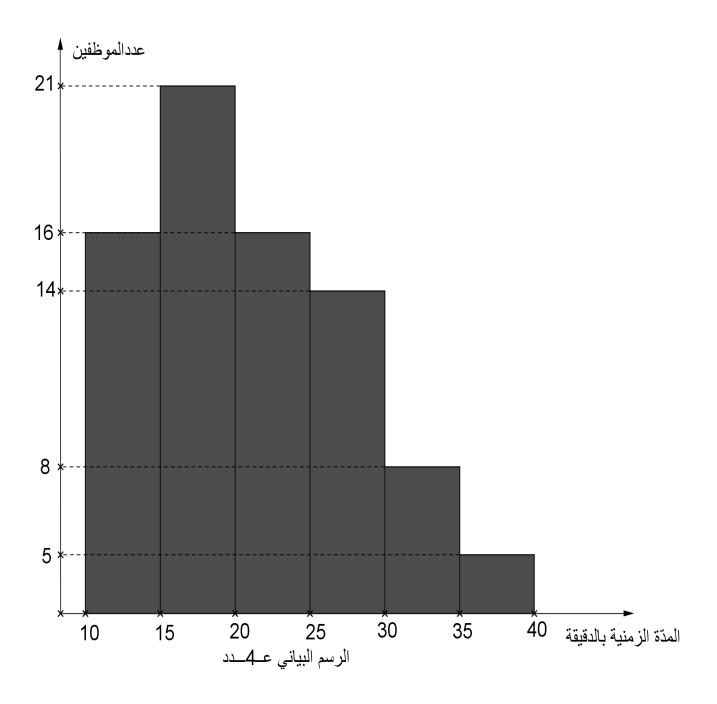
- توجَدُ بكيس عازل للرؤية خمس قريصات متشابهة ، يحملن الأعداد: 0 و 2 و 5 و $\sqrt{5}$
- ❖ نعتبر التجربة العشوائية التالية: سحب اثنين من القريصات ثمّ الاهتمام بنتيجة جذاء العددين المتحصل عليهما ،
 مع العلم أنّ القريصات لهن نفس الاحتمال للسحب
 - ❖ لاحظ الرّسم البياني عــ3ــد بالملحق ، الذي يحدّد كلّ النتائج الممكنة لهذه التجربة العشوائية.
 - 1) بالاعتماد على المعلومات المقدّمة، حدّد عدد كلّ الحالات الممكنة للتجربة العشوائية.
 - 2) مقدّما الاحتمالات في شكل كتابة كسريّة مختزلة إلى أقصى حدّ:
 - أ- أوجد p احتمال تحقق الحدث التالي: " الحصول على جذاء عدد حقيقي سالب قطعًا "
 - q احتمال تحقق الحدث التالى: " الحصول على جذاء عدد حقيقى موجب "
 - ج- أوجد k احتمال تحقق الحدث التالي: " الحصول على جذاء عدد صحيح نسبي "
 - p + q + k = 1,6 د- تحقق من المساواة التالية:
 - $\sqrt{5}$ بإضافة قريص سادس يحمل العدد $\sqrt{5}$ إلى القريصات السابقة ، وقع القيام بنفس التجربة العشوائيّة.
 - أ- حدّد عدد كلّ الحالات الممكنة للتجربة العشوائيّة.
 - ب- مقدّما الاحتمال في شكل كتابة كسريّة مختزلة إلى أقصى حدّ ،
 - أوجد e احتمال تحقق الحدث التالي: " الحصول على جذاء عدد صحيح طبيعي "


التمرين الخامس: (4 نقاط)


- قامت إدارة إحدى المؤسسات الاقتصادية بسبر للأراء لمعرفة المدة الزمنية بالدقيقة ،
 المقضيّاة من طرف مو ظفيها بين مقرّ الإقامة و مقرّ العمل.
- لاحظ الرسم البياني عــ4_دد بالملحق ، الذي يحدد النتائج التي أفرزتها هذه الاستمارة.
 - 1)أ- ماهي المجموعة الإحصائية المدروسة؟
 - ب- ماهي الميزة الإحصائية المدروسة؟ ماهي طبيعتها ؟ماهي خاصيّاتها؟
 - 2)أ- حدّد e مدى هذه السلسلة الإحصائيّة، معللا الإجابة.
 - ب- حدّد الفئة الزمنيّة الموافقة لأكبر عدد من الموظّفين، معلّلا الإجابة.
 - 3) ماهو عدد الموظفين الذين يقضنون أقل مدة زمنية؟ أكبرمدة زمنية؟
 - 4)أ- انقل ، ثمّ أكمل تعمير الجدول التالي:

[35;40[[30;35[[25;30[[20;25[[15;20[[10;15[المدّة الزمنيّة بالدقيقة (الفئة)
					12,5	$c_{ m i}$ مركز الفئة
5					• • • • • • • • • • • • • • • • • • • •	$(n_{ m i}$ عدد الموظفين (التكرار
80					16	التكرار التراكمي الصناعد

- ب- احسب \overline{X} المعدّل الحسابي التقريبي للمدّة الزمنيّة بالدقيقة الموافقة لكلّ موظف.
- ج- أوجد النسبة المائوية لعدد الموظفين، الذين يقضنون مدة زمنية أكبر أومساوية لعشرين دقيقة.
 - 5)أ- مثل هذه السلسلة الإحصائية بمضلع التكرارات التراكمية الصاعدة، وفق السلم التالي:
 - وحدات من الفئة $\leftarrow \rightarrow 1,5cm$ على محور الفاصلات)
 - و10 تكرارات تراكميّة صاعدة \longrightarrow 1cm على محور الترتيبات)
 - ب- استنتج قيمة تقريبيّة للموسّط Me برقم واحد بعد الفاصل.


 $\left\{ egin{aligned} & (120) \ (130) \$

$-\sqrt{5}$	$\sqrt{5}$	-3	2	0	
$\left\{0;-\sqrt{5}\right\}$	$\left\{0;\sqrt{5}\right\}$	${0;-3}$	{0;2}		0
$\left\{2;-\sqrt{5}\right\}$	$\left\{2;\sqrt{5}\right\}$	${2;-3}$			2
$\left\{-3;-\sqrt{5}\right\}$	$\left\{-3;\sqrt{5}\right\}$				-3
$\left\{\sqrt{5};-\sqrt{5}\right\}$					$\sqrt{5}$

الرسم البياني عــ3ــد

☞ انظر الصفحة الموالية

